Worksheet
Work and Energy Practice: An Assortment of Situations
Printer Friendly Version
In these exercises, you may use g = 10 m/sec
^{2}
.
Refer to the following information for the next three questions.
The next questions compare the behavior of two blocks sliding down two similar incline planes.
True or False?
The length of this frictionless incline's surface is L. If the block is released from rest when it is at the top of the incline, its speed when it reaches the base of the incline would equal
.
True
False
A second identical block slides down another incline that has the exact same height as the one above. If this second incline is also frictionless, how will the speeds of the two blocks compare when they each reach the bottom of their respective inclines?
the first block will be going faster at the bottom of its incline
both blocks will be traveling at the same speed at the base of their inclines
the second block will be going faster at the bottom of its incline
If the bases of the two inclines are the same length and the blocks are simultaneously released from rest at the top of each incline, which block will most likely reach the bottom first?
the first block
the second one
Refer to the following information for the next four questions.
At what point along this frictionless wire, will a 100-gram bead released from rest at point A have the greatest speed?
B
D
F
G
How fast will the bead be traveling is it passes through points C and E?
Consider a second scenario in which the wire exerts a constant frictional force of 0.3 N on the bead. If the bead has to slide 3 meters along the wire in order to reach point C, will it make it to C? If yes, how fast would it be moving?
Why did we not care about the length of the wire when it was frictionless?
Refer to the following information for the next two questions.
In each graph, a force, F, by pushing on an object moves it through a distance, s. If all four displacements are the same, and all four forces peak at the same maximum value, which graph represents the one in which the most work was done?
A
B
C
D
If each of the objects are identical in mass and all four originally start from a state of rest, which object will have gained the greatest velocity?
A
B
C
D
Refer to the following information for the next three questions.
Two identical cars are traveling North on I-95. One car is going twice as fast as the other.
How do their kinetic energies compare?
They have the same amount of KE.
The faster moving car has 2 times as much KE.
The faster moving car has 4 times as much KE.
This answer cannot be determined without knowing the mass of the cars.
If both cars have tires with the same amount of tread, so that they share the same coefficient of friction, how would the distance required for each of them to come to a complete stop compare? (These cars do not have anti-lock brakes.)
They would require the same distance to stop.
The faster moving car would require twice as much distance to stop.
The faster moving car would require 4 times as much distance to stop.
Substitute Certification:
Related Documents
Lab:
Labs -
A Battering Ram
Labs -
A Photoelectric Effect Analogy
Labs -
Acceleration Down an Inclined Plane
Labs -
Air Track Collisions
Labs -
Ballistic Pendulum
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Bouncing Steel Spheres
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Flow Rates
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
InterState Map
Labs -
LAB: Ramps - Accelerated Motion
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Loop-the-Loop
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Projectiles Released at an Angle
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rotational Inertia
Labs -
Rube Goldberg Challenge
Labs -
Spring Carts
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Blowdart Colliding with Cart
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video Lab: M&M Collides with Pop Can
Labs -
Video Lab: Marble Collides with Ballistic Pendulum
Labs -
Video Lab: Two-Dimensional Projectile Motion
Resource Lesson:
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Analyzing SVA Graph Combinations
RL -
APC: Work Notation
RL -
Average Velocity - A Calculus Approach
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Conservation of Energy and Springs
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Directions: Flash Cards
RL -
Energy Conservation in Simple Pendulums
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Gravitational Energy Wells
RL -
Mechanical Energy
RL -
Momentum and Energy
RL -
Monkey and the Hunter
RL -
Potential Energy Functions
RL -
Principal of Least Action
RL -
Rotational Dynamics: Pivoting Rods
RL -
Rotational Kinetic Energy
RL -
Springs and Blocks
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
Vector Resultants: Average Velocity
RL -
Work
RL -
Work and Energy
Review:
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Hackensack
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Cemetary
APP -
The Golf Game
APP -
The Jogger
APP -
The Pepsi Challenge
APP -
The Pet Rock
APP -
The Pool Game
APP -
The Spring Phling
CP -
2D Projectiles
CP -
Conservation of Energy
CP -
Dropped From Rest
CP -
Freefall
CP -
Momentum and Energy
CP -
Momentum and Kinetic Energy
CP -
Non-Accelerated and Accelerated Motion
CP -
Power Production
CP -
Satellites: Circular and Elliptical
CP -
Tossed Ball
CP -
Up and Down
CP -
Work and Energy
NT -
Average Speed
NT -
Back-and-Forth
NT -
Cliffs
NT -
Crosswinds
NT -
Elliptical Orbits
NT -
Escape Velocity
NT -
Gravitation #2
NT -
Headwinds
NT -
Monkey Shooter
NT -
Pendulum
NT -
Projectile
NT -
Ramps
NT -
Satellite Positions
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Energy/Work Vocabulary
WS -
Force vs Displacement Graphs
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Position-Time Graph "Story" Combinations
WS -
Potential Energy Functions
WS -
Practice: Momentum and Energy #1
WS -
Practice: Momentum and Energy #2
WS -
Practice: Vertical Circular Motion
WS -
Projectiles Released at an Angle
WS -
Rotational Kinetic Energy
WS -
Static Springs: The Basics
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Work and Energy Practice: Forces at Angles
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Antiderivatives and Kinematics Functions
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
TB -
Work, Power, Kinetic Energy
PhysicsLAB
Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton