Resource Lesson
Capacitors and Dielectrics
Printer Friendly Version
If the electric field between the plates becomes too strong, the air between them can no longer insulate the charges from sparking, discharging, between the plates. In order to keep this from happening, a
dielectric
is often inserted between the plates to reduce the strength of the electric field, without having to reduce the voltage being placed across the plates.
A
dielectric is a polar material
whose electric field aligns to oppose the original electric field already established between the plates. The dielectric is measured in terms of a dimensionless constant, K ≥ 1, whose value is usually referenced from a table. If this insulating material is insufficient the capacitor can leak allowing current to flow between the plates. If this occurs, the electric device "smells as if something is burning."
K = E
original
/E
dielectric
K = E
o
/ E
d
K = C
dielectric
/C
original
K = C
d
/ C
o
When the battery is removed, the dielectric will decrease the electric field strength and the voltage between the plates while it increases their capacitance.
E = V/d
Refer to the following information for the next question.
A parallel-plate air capacitor is charged by placing a 90-V battery across it. The battery is then removed, and an insulating, dielectric fluid is inserted between the plates. The voltage across the capacitor is now 28 volts.
Since the battery is removed, the voltage is permitted to change but the charge on the plates must remain constant. The presence of the dielectric also allows the capacitance of the plates to be changed.
What is the dielectric constant of the fluid?
Refer to the following information for the next question.
A parallel-plate air capacitor holds a charge of 30 nC when a voltage of V
o
is placed across its plates. If the battery is not removed and a dielectric fluid is inserted between the plates, the charge on the plates increases to 87 nC.
Since the battery is NOT removed, the voltage must remain constant since it is regulated by the battery's presence in the circuit but the charge on the plates is permitted to change. The presence of the dielectric also allows the capacitance of the plates to be changed.
What is the dielectric constant of the fluid?
Related Documents
Lab:
CP -
Series and Parallel Circuits
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Mass of an Electron
Labs -
Parallel and Series Circuits
Labs -
RC Time Constants
Labs -
Resistance and Resistivity
Labs -
Resistance, Gauge, and Resistivity of Copper Wires
Labs -
Telegraph Project
Labs -
Terminal Voltage of a Lantern Battery
Labs -
Wheatstone Bridge
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Ampere's Law
RL -
An Introduction to DC Circuits
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Dielectrics: Beyond the Fundamentals
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electricity and Magnetism Background
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Filaments
RL -
Gauss' Law
RL -
Kirchhoff's Laws: Analyzing Circuits with Two or More Batteries
RL -
Kirchhoff's Laws: Analyzing DC Circuits with Capacitors
RL -
LC Circuit
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Magnetism: Current-Carrying Wires
RL -
Meters: Current-Carrying Coils
RL -
Parallel Plate Capacitors
RL -
RC Time Constants
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Torque on a Current-Carrying Loop
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
Worksheet:
APP -
The Birthday Cake
APP -
The Circuit Rider
APP -
The Cycle Shop
APP -
The Electrostatic Induction
CP -
Coulomb's Law
CP -
DC Currents
CP -
Electric Potential
CP -
Electric Power
CP -
Electrostatics: Induction and Conduction
CP -
Ohm's Law
CP -
Parallel Circuits
CP -
Power Production
CP -
Power Transmission
CP -
RIVP Charts #1
CP -
RIVP Charts #2
CP -
Series Circuits
NT -
Brightness
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Light and Heat
NT -
Lightning
NT -
Parallel Circuit
NT -
Photoelectric Effect
NT -
Potential
NT -
Series Circuits
NT -
Shock!
NT -
Van de Graaff
NT -
Water Stream
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combinations of Capacitors
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Introduction to R | I | V | P Charts
WS -
Kirchhoff's Laws: DC Circuits with Capacitors
WS -
Kirchhoff's Laws: Sample Circuit
WS -
Parallel Reading - The Atom
WS -
Resistance, Wattage, and Brightness
WS -
Standard Model: Particles and Forces
TB -
34A: Electric Current
TB -
35A: Series and Parallel
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Basic DC Circuits
TB -
Electric Field Strength vs Electric Potential
TB -
Multiple-Battery Circuits
TB -
Textbook Set #6: Circuits with Multiple Batteries
PhysicsLAB
Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton