NextTime Question
The Ax Handle
Printer Friendly Version
An archeologist extracts a sample of carbon from an ancient ax handle and finds that it emits an average of 10 beta emissions per minute. She finds that the mass of the carbon from a living tree emits 40 betas per minute.
Knowing that the half life of carbon-14 is 5730 years, she concludes that the age of the ax handle is about
a) 2865 years b) 5730 years
c) 11460 years d) 17190 years
View Correct Answer
Related Documents
Lab:
Labs -
A Photoelectric Effect Analogy
Labs -
Basic Particles
Labs -
Experimental Radius
Labs -
Hydrogen Spectrum
Labs -
Hydrogen Spectrum
Labs -
Mass of an Electron
Labs -
Mass of the Top Quark
Labs -
Mirror Symmetry
Labs -
Quantized Mass
Labs -
Radiation of a Metal Cylinder
Labs -
Using Young's Equation - Wavelength of a Helium-Neon Laser
Resource Lesson:
RL -
An Outline: Dual Nature of Light and Matter
RL -
Atomic Models and Spectra
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Energy-Level Diagrams
RL -
Excitation
RL -
Famous Discoveries and Experiments
RL -
Famous Discoveries: Bohr Model
RL -
Famous Discoveries: de Broglie Matter Waves
RL -
Famous Discoveries: The Franck-Hertz Experiment
RL -
Famous Discoveries: The Photoelectric Effect
RL -
Famous Experiments: Davisson-Germer
RL -
Famous Experiments: Michelson-Morley
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Famous Experiments: The Compton Effect
RL -
Famous Experiments: The Discovery of the Neutron
RL -
Nuclear Reaction
RL -
What is Mass?
REV -
Orbitals
Worksheet:
APP -
Eternally Bohring
APP -
Nuclear Flu
APP -
The Science Fair
APP -
What's My Line
CP -
Atomic Nature of Matter
CP -
Atomic Nucleus and Radioactivity
CP -
Balancing Nuclear Equations
CP -
Natural Transmutations
CP -
Nuclear Fission and Fusion
CP -
Radioactive Half Life
CP -
The Atom and the Quantum
NT -
Atomic Number
NT -
Beta Decay
NT -
Binding Energy
NT -
Black Holes
NT -
Electrostatic Attraction
NT -
General Relativity
NT -
Helium Balloons
NT -
Hot Springs
NT -
Hydrogen Atom
NT -
Hydrogen Fusion
NT -
Nuclear Equations
NT -
Photoelectric Effect
NT -
Radiant Energy
NT -
Radioactive Cookies
NT -
Uranium Decay
NT -
Uranium Fission
RL -
Chapter 3: Electrons
WS -
Atomic Models and Spectra
WS -
Energy Level Diagrams
WS -
Parallel Reading - The Atom
WS -
Rotational and Reflection Symmetries
WS -
Standard Model: Particles and Forces
TB -
38A: Atomic Physics
TB -
Half-Life Properties
Paul G. Hewitt
Copyright © 1984-2005
All rights reserved.
Used with written
permission.
PhysicsLAB
HTML conversion
Copyright © 1997-2024
Catharine H. Colwell
All rights reserved.
Mainland High School
Daytona Beach, FL 32114