AP Free Response Question
2011 B5
Printer Friendly Version
In the experimental setup represented below, a very small plastic sphere of mass
m
with charge
q
is allowed to fall under the influence of gravity between two parallel metal plates separated by a fixed distance
L
. A variable potential difference may be applied between the two plates. The experiment is conducted inside a vacuum chamber.
(a) A potential difference of magnitude
V
is applied between the top and bottom plates such that the sphere falls at constant speed
v
. Derive an expression for the magnitude of the charge
q
on the sphere. Express your answer in terms of
m
,
L
,
V
, and fundamental constants, as appropriate.
The experiment is performed many times with spheres of identical known mass but different unknown charges, each time adjusting the potential difference
V
to the value needed so that the sphere falls at constant speed
v
. The magnitudes of the charges are calculated from the measured values of the potential difference. The data is plotted below as a function of the magnitude of
V
.
(b) Provide a physical explanation for the gap observed in the data between potential differences of 1700 V and 2800 V.
(c) If the value of L is 0.050 m, calculate the mass
m
of the spheres.
A uniform magnetic field of magnitude
B
, directed into the page, is now applied in the bottom half of the region between the plates, as shown in the figure below. The experiment is repeated, with the potential difference adjusted again so that the charged sphere falls with constant speed prior to entering the magnetic field.
(d) i. Describe the motion of the sphere as it travels through the magnetic field.
(d) ii. Describe how the motion could be used to determine the sign of the charge.
(e) Derive an expression for the minimum value of
B
needed to prevent the sphere from reaching the bottom plate. Express your answer in terms of
m
,
q
,
v
,
L
, and fundamental constants, as appropriate.
Topic Formulas
Description
Published Formula
capacitance
Coulomb's Law
electric field
electric potential energy
energy stored in a capacitor
Faraday's Law
friction
gravitational potential energy
Hooke's Law
magnetic field around a current-carrying wire
magnetic flux
magnetic force on a current-carrying wire
magnetic force on a moving charge
Newton's 2nd Law
Newton's Law of Universal Gravitation
parallel-plate capacitor
potential and electric field strength
potential due to a collection of point charges
Related Documents
Lab:
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Falling Coffee Filters
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Forces Between Ceramic Magnets
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Magnetic Field in a Solenoid
Labs -
Mass of a Rolling Cart
Labs -
Mass of an Electron
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
RC Time Constants
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Telegraph Project
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Falling Coffee Filters
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
A Guide to Biot-Savart Law
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Ampere's Law
RL -
Capacitors and Dielectrics
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Dielectrics: Beyond the Fundamentals
RL -
Eddy Currents plus a Lab Simulation
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electricity and Magnetism Background
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Cathode Rays
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gauss' Law
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Introduction to Magnetism
RL -
LC Circuit
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Magnetic Forces on Particles (Part II)
RL -
Magnetism: Current-Carrying Wires
RL -
Maxwell's Equations
RL -
Meters: Current-Carrying Coils
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Parallel Plate Capacitors
RL -
Properties of Friction
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Torque on a Current-Carrying Loop
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
Maggie
APP -
The Antelope
APP -
The Birthday Cake
APP -
The Box Seat
APP -
The Electrostatic Induction
APP -
The Jogger
APP -
The Tree House
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Coulomb's Law
CP -
Electric Potential
CP -
Electrostatics: Induction and Conduction
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Magnetism
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Bar Magnets
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Lightning
NT -
Magnetic Forces
NT -
Meters and Motors
NT -
Photoelectric Effect
NT -
Potential
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
NT -
Van de Graaff
NT -
Water Stream
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Calculating Force Components
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combinations of Capacitors
WS -
Combining Kinematics and Dynamics
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
Magnetic Forces on Current-Carrying Wires
WS -
Magnetic Forces on Moving Charges
WS -
net F = ma
WS -
Parallel Reading - The Atom
WS -
Practice with Ampere's Law
WS -
Practice: Vertical Circular Motion
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: Forces at Angles
TB -
36A: Magnets, Magnetic Fields, Particles
TB -
36B: Current Carrying Wires
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Electric Field Strength vs Electric Potential
TB -
Exercises on Current Carrying Wires
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
CB-ETS
Copyright © 1970-2024
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114