AP Free Response Question
2000 B3
Printer Friendly Version
Three identical resistors, each with resistance R, and a capacitor of 1.0 x 10
^{-9}
F are connected to a 30 V battery with negligible internal resistance, as shown in the circuit diagram above. Switches S
_{1}
and S
_{2}
are initially closed, and switch S
_{3}
is initially open. A voltmeter is connected as shown.
(a) Determine the reading on the voltmeter.
(b) Switches S
_{1}
and S
_{2}
are now opened, and then switch S
_{3}
is closed. Determine the charge Q on the capacitor after S
_{3}
has been closed for a very long time.
(c) After the capacitor is fully charged, switches S
_{1}
and S
_{2}
remain open, switch S
_{3}
remains closed, the plates are held fixed, and a conducting copper block is inserted midway between the plates, as shown below. The plates of the capacitor are separated by a distance of 1.0 mm, and the copper block has a thickness of 0.5 mm.
i. What is the potential difference between the plates?
ii. What is the electric field inside the copper block?
iii. On the diagram above, draw arrows to clearly indicate the direction of the electric field between the plates.
iv. Determine the magnitude of the electric field in each of the spaces between the plates and the copper block.
Topic Formulas
Description
Published Formula
capacitance
capacitors in parallel
capacitors in series
Coulomb's Law
electric current
electric field
electric potential energy
energy stored in a capacitor
Joule's Law
Ohm's Law
parallel-plate capacitor
potential and electric field strength
potential due to a collection of point charges
resistance in parallel
resistance in series
resistivity
Related Documents
Lab:
CP -
Series and Parallel Circuits
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Mass of an Electron
Labs -
Parallel and Series Circuits
Labs -
RC Time Constants
Labs -
Resistance and Resistivity
Labs -
Resistance, Gauge, and Resistivity of Copper Wires
Labs -
Telegraph Project
Labs -
Terminal Voltage of a Lantern Battery
Labs -
Wheatstone Bridge
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Ampere's Law
RL -
An Introduction to DC Circuits
RL -
Capacitors and Dielectrics
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Dielectrics: Beyond the Fundamentals
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electricity and Magnetism Background
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Filaments
RL -
Gauss' Law
RL -
Kirchhoff's Laws: Analyzing Circuits with Two or More Batteries
RL -
Kirchhoff's Laws: Analyzing DC Circuits with Capacitors
RL -
LC Circuit
RL -
Magnetic Field Along the Axis of a Current Loop
RL -
Magnetism: Current-Carrying Wires
RL -
Meters: Current-Carrying Coils
RL -
Parallel Plate Capacitors
RL -
RC Time Constants
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
RL -
Torque on a Current-Carrying Loop
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
Worksheet:
APP -
The Birthday Cake
APP -
The Circuit Rider
APP -
The Cycle Shop
APP -
The Electrostatic Induction
CP -
Coulomb's Law
CP -
DC Currents
CP -
Electric Potential
CP -
Electric Power
CP -
Electrostatics: Induction and Conduction
CP -
Ohm's Law
CP -
Parallel Circuits
CP -
Power Production
CP -
Power Transmission
CP -
RIVP Charts #1
CP -
RIVP Charts #2
CP -
Series Circuits
NT -
Brightness
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Light and Heat
NT -
Lightning
NT -
Parallel Circuit
NT -
Photoelectric Effect
NT -
Potential
NT -
Series Circuits
NT -
Shock!
NT -
Van de Graaff
NT -
Water Stream
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combinations of Capacitors
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Introduction to R | I | V | P Charts
WS -
Kirchhoff's Laws: DC Circuits with Capacitors
WS -
Kirchhoff's Laws: Sample Circuit
WS -
Parallel Reading - The Atom
WS -
Resistance, Wattage, and Brightness
WS -
Standard Model: Particles and Forces
TB -
34A: Electric Current
TB -
35A: Series and Parallel
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Basic DC Circuits
TB -
Electric Field Strength vs Electric Potential
TB -
Multiple-Battery Circuits
TB -
Textbook Set #6: Circuits with Multiple Batteries
CB-ETS
Copyright © 1970-2024
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114