Equipment The equipment which will be used in this lab is: the PASCO Gas Law Apparatus, a ring stand, an ice-water bath, a hot water bath, a stainless-steel temperature probe, a gas-pressure sensor, LabPro interface, a 100 gram mass, and various tube couplings.
The PASCO heat engine apparatus is a closed system consisting of a nearly friction-free piston inside a cylinder. It has two air tubes leading from the cylinder: one going to a pressure sensor (which is measured using the Lab Pro) and the other leading to an air reservoir (aluminum can) that we will immerse in water to change the temperature of the air in the system. There is also be a temperature probe connected to the interface to record the temperature of each water bath.
The manufacturer states that the piston has a diameter of 32.5 ± 0.1 mm and a mass of 35.0 ± 0.06 grams.
The platform on the top of the piston gives you the ability to add a mass that will change the pressure in the cylinder. The manufacturer recommends that this mass does not exceed 200 grams; we will use a 100-gram slotted mass. The pressure sensor measures the absolute pressure in the cylinder, P, in kPa.
As the piston moves, the volume of the cylinder changes, The total volume of the air in the system consists of the volume of the cylinder plus the volume of the aluminum can and the two air hoses. The millimeter scale on the cylinder will allow you to directly measure the cylinder's height.
When the piston undergoes transitions in which one or more of the system's properties (P, V, or T) change, the data can be potted on a P-V diagram. Any work done by the system during a transition can be found as the area of the graph bounded by the x-axis (volume axis) and that process' graph. The processes that can be applicable to our heat engine's cycle are limited to isovolumetric, isothermal, isobaric, and adiabatic.
The total work done during a complete cycle is represented by the area of the closed cycle on the P-V diagram. It is important to take your measurements of temperature, pressure, and piston height as quickly as possible after each transition stabilizes since the apparatus does leak air slightly and you want the completed cycle to return to its initial conditions providing you with a closed PV diagram to analyze. This is a “real” 4-step heat engine that has expansion and compression processes in which the engine will do useful mechanical work by lifting a 100-gram mass (and the piston) from one height to another. During the expansion steps the gas lifts the mass and piston increasing their potential energy; while during the compression steps their potential energy is reduced. Remember that potential energy is calculated with the equation PE = mgΔy. A diagram of the four steps is shown below: When your experimental data has been plotted on a P-V diagram, it will hopefully ressemble the diagram below where there is a close agreement between the state variables for Point A (P, V, T) and the values for the cycle's initial preparation conditions.
Notice that steps BC and DA are isobaric processes and steps AB (hopefully the conditions at the engine's preparation and those at the end of the cycle will be synonymous) and CD are isothermal processes.
Air Calculations |