Worksheet
SHM Properties
Printer Friendly Version
Which of the following is NOT a property of simple harmonic oscillators?
The motion of the oscillator has a constant frequency.
The force within the oscillating system is directly proportional to the the oscillator's displacement and acts to displace the oscillator away from its equilibrium position.
The velocity of the oscillator is maximum as it passes through equilibrium, and zero as it passes through the extreme positions in its oscillation.
The acceleration experienced by the oscillator is proportional to the negative of its displacement from equilibrium.
none of the above, all are properties of SHM
Which formula is CORRECT when calculating the period of a simple harmonic oscillator?
Which formula is NOT correct when calculating the maximum velocity of a simple harmonic oscillator?
none of the above, all are correct methods of calculating the maximum velocity in SHM
Which formula is NOT correct when calculating the magnitude of a simple harmonic oscillator's maximum acceleration?
none of the above, all are correct methods of calculating the maximum acceleration in SHM
Refer to the following information for the next question.
t = 0
t = ¼T
t = ½T
t = 3(¼)T
If the radius of the circular disk is 30 cm, and the disk revolves at a rate of 20 hz, which would be the correct equation to determine the position of this simple harmonic oscillator?
none of the above
Related Documents
Lab:
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
Loop-the-Loop
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Oscillating Springs
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Circular Motion
Labs -
Video LAB: Looping Rollercoaster
Labs -
Water Springs
Resource Lesson:
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
Centripetal Acceleration and Angular Motion
RL -
Conservation of Energy and Springs
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation: Period of a Simple Pendulum
RL -
Energy Conservation in Simple Pendulums
RL -
Gravitational Energy Wells
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Magnetic Forces on Particles (Part II)
RL -
Period of a Pendulum
RL -
Rotational Kinematics
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Thin Rods: Moment of Inertia
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Vertical Circles and Non-Uniform Circular Motion
Review:
REV -
Review: Circular Motion and Universal Gravitation
Worksheet:
APP -
Big Al
APP -
Ring Around the Collar
APP -
The Satellite
APP -
The Spring Phling
APP -
Timex
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Satellites: Circular and Elliptical
NT -
Circular Orbits
NT -
Pendulum
NT -
Rotating Disk
NT -
Spiral Tube
WS -
Basic Practice with Springs
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
More Practice with SHM Equations
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Practice: SHM Equations
WS -
Practice: Uniform Circular Motion
WS -
Practice: Vertical Circular Motion
WS -
Static Springs: The Basics
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
TB -
Centripetal Acceleration
TB -
Centripetal Force
PhysicsLAB
Copyright © 1997-2022
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton