Worksheet
Freebody Diagrams #2
Printer Friendly Version
Refer to the following information for the next four questions.
True or False:
The magnitude of the normal,
, is smaller than the object's weight.
True
False
A 5 kg mass is being pulled by a string, acting at an angle θ to the horizontal, across a rough table at a constant velocity. If the tension is 15 N and θ equals 37º, what is the magnitude of the frictional force?
The numerical value of the normal equals
37 N
40 N
49 N
58 N
What is the coefficient of friction between the mass and the surface?
Refer to the following information for the next four questions.
True or False:
The magnitude of the normal,
, is smaller than the object's weight.
True
False
A 5 kg mass is being pushed across a rough table at a constant velocity by a constant force, F = 15 N, which acts at an angle θ = 37º to the horizontal. What is the magnitude of the frictional force?
The numerical value of the normal now equals
40 N
49 N
58 N
61 N
What is the coefficient of friction between the mass and the surface?
Refer to the following information for the next six questions.
True or False:
The magnitude of the normal,
, is smaller than the object's weight.
True
False
If the angle of the incline equals 37
^{o}
and the mass remains 5 kg, what is the numerical value of the normal?
True or False:
The mass will accelerate down the incline with an acceleration equal to g sin(θ).
True
False
If the mass starts from rest, how long will it take to slide down an incline 40 cm long?
If instead the 5 kg block slid down the 37
^{o}
incline at a constant velocity, what would be the coefficient of friction between the two surfaces?
0.6
0.75
0.8
cannot be determined without more information
How large an applied force, F, would be required to slide the mass up the incline at a constant velocity?
Related Documents
Lab:
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Falling Coffee Filters
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Falling Coffee Filters
Resource Lesson:
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Properties of Friction
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
What is Mass?
RL -
Work and Energy
Worksheet:
APP -
Big Fist
APP -
Family Reunion
APP -
The Antelope
APP -
The Box Seat
APP -
The Jogger
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Calculating Force Components
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combining Kinematics and Dynamics
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
net F = ma
WS -
Practice: Vertical Circular Motion
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: Forces at Angles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
PhysicsLAB
Copyright © 1997-2017
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton