CP Workbook
Non-Accelerated and Accelerated Motion
Printer Friendly Version
Non-Accelerated Motion
Refer to the following information for the next three questions.
The sketch shows a ball rolling at constant velocity along a level floor. The ball rolls from the first position shown to the second in 1 second. The two positions are 1 meter apart. Discuss with your partner where you would sketch the ball at successive 1-second intervals all the way to the wall (neglect resistance).
Would the successive ball positions be evenly spaced, farther apart, or closer together?
Why?
The ball reaches the wall with a speed of ____ m/s and takes a time of ____ seconds.
The table given below shows data of sprinting speeds of some animals. Make whatever computations are necessary to complete the table.
A =
B =
C =
animal
distance
time
speed
cheetah
75 m
3 sec
25 m/sec
greyhound
160 m
10 sec
C
gazelle
1 km
B
100 km/hr
turtle
A
30 sec
1 cm/sec
Accelerated Motion
Refer to the following information for the next eight questions.
An object, starting from rest, gains a speed
v = at
when it undergoes uniform acceleration. The distance it covers is
d = ½at
^{2}
. Uniform acceleration occurs for a ball rolling down an inclined plane. The plane below is tilted so a ball picks up a speed of 2 m/s each second; then its acceleration a 2 m/s
^{2}
. The positions of the ball are shown for 1-second intervals. Fill in the blanks for total distance traveled, Δdistance traveled each second, and the final speed at the end of each interval.
D =
E =
F =
G =
H =
I =
J =
K =
cumulative time
(seconds)
cumulative distance traveled
Δdistance
per second
final speed
0
0 meters
---
0 m/sec
1
1 meter
1 meter
2 m/sec
2
4 meters
3 meters
I
3
D
F
6 m/sec
4
E
G
J
5
25 meters
H
K
Do you see that the total distance from the starting point increases as the square of the time? This was discovered by Galileo. If the incline were to continue, predict the ball's distance from the starting point for the next 3 seconds.
Note the increase of distance between ball positions with time. Do you see an odd-integer pattern (also discovered by Galileo) for this increase? If the incline were to continue, predict the successive distances between ball positions for the next 3 seconds.
Related Documents
Lab:
Labs -
A Photoelectric Effect Analogy
Labs -
Acceleration Down an Inclined Plane
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Momentum
Labs -
Cookie Sale Problem
Labs -
Flow Rates
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
InterState Map
Labs -
LAB: Ramps - Accelerated Motion
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Projectiles Released at an Angle
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rube Goldberg Challenge
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video Lab: Two-Dimensional Projectile Motion
Resource Lesson:
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Analyzing SVA Graph Combinations
RL -
Average Velocity - A Calculus Approach
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Directions: Flash Cards
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Monkey and the Hunter
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Vector Resultants: Average Velocity
Review:
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Hackensack
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Cemetary
APP -
The Golf Game
APP -
The Spring Phling
CP -
2D Projectiles
CP -
Dropped From Rest
CP -
Freefall
CP -
Tossed Ball
CP -
Up and Down
NT -
Average Speed
NT -
Back-and-Forth
NT -
Crosswinds
NT -
Headwinds
NT -
Monkey Shooter
NT -
Pendulum
NT -
Projectile
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Force vs Displacement Graphs
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Position-Time Graph "Story" Combinations
WS -
Projectiles Released at an Angle
WS -
Rotational Kinetic Energy
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Work and Energy Practice: An Assortment of Situations
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Antiderivatives and Kinematics Functions
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
Paul G. Hewitt
Copyright © 1984-2005
All rights reserved.
Used with written
permission.
PhysicsLAB
HTML conversion
Copyright © 1997-2019
Catharine H. Colwell
All rights reserved.
Mainland High School
Daytona Beach, FL 32114