Amusing Problems
The Pepsi Challenge
Printer Friendly Version
As a consultant to the soft-drink industry, Dr. J is given the task of conducting the ultimate Pepsi taste test. This is Dr. J's tenth taste test, which puts him seven up on his nearest consultant, who had only done three. Of course Dr. J is very qualified, having been hooked on soft drinks (especially orange soda) since he was
Nehi
to a pop bottle. Dr. J mounts a rather large container of Pepsi on a ledge some 3 meters above the ground. A bullet of mass 5 grams is then fired into the container, thus killing the taste. Not only that, but the Pepsi falls through the bullet hole onto the ground below (causing the taste to go flat). The wall of the container is 2 cm thick. The velocity of the bullet changes from an initial value of 500 m/sec just before striking the container wall to 5 m/sec upon leaving the container wall and entering the Pepsi. It finally fizzles out at a point 25 cm from the container wall.
A. How much work does the container wall do on the bullet?
View Correct Answer
B How much work does the Pepsi do on the bullet?
View Correct Answer
C. At what velocity does the Pepsi hit the floor?
View Correct Answer
Related Documents
Lab:
Labs -
A Battering Ram
Labs -
A Photoelectric Effect Analogy
Labs -
Air Track Collisions
Labs -
Ballistic Pendulum
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Bouncing Steel Spheres
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Loop-the-Loop
Labs -
Ramps: Sliding vs Rolling
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rotational Inertia
Labs -
Rube Goldberg Challenge
Labs -
Spring Carts
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Video Lab: Blowdart Colliding with Cart
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: M&M Collides with Pop Can
Labs -
Video Lab: Marble Collides with Ballistic Pendulum
Resource Lesson:
RL -
APC: Work Notation
RL -
Conservation of Energy and Springs
RL -
Energy Conservation in Simple Pendulums
RL -
Gravitational Energy Wells
RL -
Mechanical Energy
RL -
Momentum and Energy
RL -
Potential Energy Functions
RL -
Principal of Least Action
RL -
Rotational Dynamics: Pivoting Rods
RL -
Rotational Kinetic Energy
RL -
Springs and Blocks
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
Work
RL -
Work and Energy
Worksheet:
APP -
The Jogger
APP -
The Pet Rock
APP -
The Pool Game
CP -
Conservation of Energy
CP -
Momentum and Energy
CP -
Momentum and Kinetic Energy
CP -
Power Production
CP -
Satellites: Circular and Elliptical
CP -
Work and Energy
NT -
Cliffs
NT -
Elliptical Orbits
NT -
Escape Velocity
NT -
Gravitation #2
NT -
Ramps
NT -
Satellite Positions
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Energy/Work Vocabulary
WS -
Force vs Displacement Graphs
WS -
Introduction to Springs
WS -
Kinematics Along With Work/Energy
WS -
Potential Energy Functions
WS -
Practice: Momentum and Energy #1
WS -
Practice: Momentum and Energy #2
WS -
Practice: Vertical Circular Motion
WS -
Rotational Kinetic Energy
WS -
Static Springs: The Basics
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
Work, Power, Kinetic Energy
Walch Publishing
Copyright © 1985-2017
All rights reserved.
Used with
permission.
PhysicsLAB
HTML conversion
Copyright © 1998-2017
Catharine H. Colwell
All rights reserved.
Mainland High School
Daytona Beach, FL 32114