Resource Lesson
Vibration Graphs
Printer Friendly Version
A
vibration graph
displays the behavior at a SINGLE location along the wave's path as time passes. One
vibration
can be defined as one complete cycle, or back and forth motion.
The
period of a periodic wave
is defined as the amount of time required for a vibrating particle to return to its original observed position. The period can be calculated using the following equation:
When calculated, the
unit of measure is usually expressed as just seconds (sec)
, instead of seconds per vibration. But either are considered to be correct.
The
frequency of a periodic wave
represents how many vibrations a particle makes in a given amount of time, usually one second. It can be defined as
When calculated, the
unit of measure is usually expressed as hertz (hz)
, instead of vibrations per second. But either are considered to be correct.
As you can see from their respective definitions,
period and frequency are reciprocals
.
Remember that the
amplitude of the graph
is an indication of a mechanical wave's energy content; the greater the amplitude, the more energetic the source that produced the waves. We are now going to examine to vibration graphs in detail.
Refer to the following information for the next seven questions.
On this graph, the x-axis represents time in seconds.
At what time does the first recorded crest occur?
How many crests are displayed on the graph?
Based on the crests displayed on this graph, how many vibrations occurred?
At what time did the last crest occur?
What is the period of these vibrations?
Would you have gotten the same value for the period had you counted troughs instead of crests? Why or why not?
What was the frequency of the source producing these waves?
Refer to the following information for the next three questions.
On this graph the x-axis once again represents time in seconds.
Based on the number of crests, how many complete vibrations are displayed on this graph? You may assume that the first "indisputable" crest starts at approximately 2.1 seconds.
What was the frequency of the source that generated this wave?
Which source was more energetic: source A that generated the graph we just analyzed (in blue) or source B that generated the vibration graph shown below?
Related Documents
Lab:
Labs -
Directions: Constructive and Destructive Interference
Labs -
Doppler Effect: Source Moving
Labs -
Frequency of Vibrating Strings
Labs -
Illuminance by a Light Source
Labs -
Inertial Mass
Labs -
Interference Shading
Labs -
Pipe Music
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Checklists
Labs -
Ripple Tank Sample Solutions
Labs -
Ripple Tank Student Involvement Sheet
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Speed of a Wave Along a Spring
Labs -
Speed of Sound in Air
Labs -
Speed of Sound in Copper
Labs -
Video: Law of Reflection
Labs -
Video: Law of Reflection Sample Diagram
Resource Lesson:
RL -
Barrier Waves, Bow Waves, and Shock Waves
RL -
Beats: An Example of Interference
RL -
Interference of Waves
RL -
Interference: In-phase Sound Sources
RL -
Introduction to Sound
RL -
Law of Reflection
RL -
Physical Optics - Thin Film Interference
RL -
Resonance in Pipes
RL -
Resonance in Strings
RL -
Ripple Tank Video Guides
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Sound Level Intensity
RL -
Speed of Waves Along a String
RL -
The Doppler Effect
RL -
Vibrating Systems - Simple Pendulums
RL -
Wave Fundamentals
RL -
Waveform vs Vibration Graphs
REV -
Orbitals
Review:
REV -
Chapter 26: Sound
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Sound
REV -
Waves and Sound
REV -
Waves and Sound
Worksheet:
APP -
Echo Chamber
APP -
The Dog-Eared Page
CP -
Light Properties
CP -
Reflection
CP -
Shock Waves
CP -
Sound
CP -
Waves and Vibrations
NT -
Apparent Depth
NT -
Atmospheric Refraction
NT -
Concert
NT -
Light vs Sound Waves
NT -
Shock Cone
NT -
Sound Waves
NT -
Standing Waves
WS -
Beats
WS -
Beats, Doppler, Resonance Pipes, and Sound Intensity
WS -
Counting Vibrations and Calculating Frequency/Period
WS -
Doppler - A Challenge Problem
WS -
Doppler Effect
WS -
Fixed and Free-end Reflections
WS -
Fundamental Wave Terms
WS -
Illuminance 1
WS -
Illuminance 2
WS -
Interference: In-phase Sound Sources
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
More Practice with Resonance in Pipes
WS -
More Practice with the Doppler Practice
WS -
Practice with Resonance in Pipes
WS -
Practice with the Doppler Effect
WS -
Practice: Speed of a Wave Along a String
WS -
Pulse Superposition: Interference
WS -
Ripple Tank Review
WS -
Sound Vocabulary
WS -
Speed of Sound
WS -
Speed of Sound (Honors)
WS -
Standing Wave Patterns #1
WS -
Standing Wave Patterns #2
WS -
Standing Wave Patterns #3
WS -
Standing Wave Patterns #4
WS -
Vibrating Systems - Period and Frequency
WS -
Wave Phenomena Reading Guide
WS -
Wave Pulses
WS -
Waveform and Vibration Graphs #1
WS -
Waveform and Vibration Graphs #2
TB -
25A: Introduction to Waves and Vibrations
TB -
25B: Vibrations and Waves
TB -
25C: Wave Speed
TB -
25D: Interference
TB -
25E: Doppler
TB -
25F: Doppler Effect (continued)
TB -
26B: Speed of Sound
TB -
26C: Resonance
TB -
26D: Beats
TB -
26E: Decibels
TB -
27A: Light Properties
TB -
Decibels and Sound Intensity #1
TB -
Decibels and Sound Intensity #2
TB -
Interference Re-examined
TB -
Refraction Phenomena Reading Questions
TB -
Sound: Mixed Practice
TB -
Waves and Vibrations
PhysicsLAB
Copyright © 1997-2020
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton