Resource Lesson
The Law of Universal Gravitation
Printer Friendly Version
The
Law of Universal Gravitation
states that every object in the universe attracts every other object in the universe with a force that has a
magnitude
which is directly proportional to the product of their masses and inversely proportional to the distance between their centers squared.
where
G is the gravitational constant, 6.67 x 10
^{-11}
Nm
^{2}
/kg
^{2}
M
_{1}
is the mass of the first body in kg
M
_{2}
is the mass of the second body in kg
R is the distance from the center of M
_{1}
to the center of M
_{2}
This is the first of several important inverse-square relationships that we will study: light intensity and electrostatic force are two others.
Let's practice this relationship by looking at a few examples.
Refer to the following information for the next four questions.
Given that the gravitational attraction between two objects of mass
M
that are located a distance
r
apart is called
F
.
How would the force change between these two objects if the distance between them were to be doubled to
2r
?
How would the force change between these two objects if the distance between them were to be halved to
½r
?
How would the force change between these two objects if one object magically doubled in mass while the other object magically tripled in mass while the distance between them stayed the same,
r
?
How would the force change between these two objects if one object magically doubled in mass, while the other object magically tripled in mass, and the distance between them doubled to
2r
?
Related Documents
Lab:
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Falling Coffee Filters
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Gravitational Field Strength
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
Lab: Triangle Measurements
Labs -
LabPro: Newton's 2nd Law
Labs -
Loop-the-Loop
Labs -
Mars' Lab
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Oscillating Springs
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video LAB: Looping Rollercoaster
Labs -
Water Springs
Resource Lesson:
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
Advanced Gravitational Forces
RL -
Advanced Satellites
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Centripetal Acceleration and Angular Motion
RL -
Conservation of Energy and Springs
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation: Period of a Simple Pendulum
RL -
Energy Conservation in Simple Pendulums
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Gravitational Energy Wells
RL -
Gravitational Potential Energy
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Magnetic Forces on Particles (Part II)
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Period of a Pendulum
RL -
Properties of Friction
RL -
Rotational Kinematics
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Symmetries in Physics
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
Thin Rods: Moment of Inertia
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vertical Circles and Non-Uniform Circular Motion
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Review: Circular Motion and Universal Gravitation
Worksheet:
APP -
Big Al
APP -
Big Fist
APP -
Family Reunion
APP -
Ring Around the Collar
APP -
The Antelope
APP -
The Box Seat
APP -
The Jogger
APP -
The Satellite
APP -
The Spring Phling
APP -
Timex
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Satellites: Circular and Elliptical
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Circular Orbits
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Ice Boat
NT -
Pendulum
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Basic Practice with Springs
WS -
Calculating Force Components
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combining Kinematics and Dynamics
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
More Practice with SHM Equations
WS -
net F = ma
WS -
Parallel Reading - The Atom
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Practice: SHM Equations
WS -
Practice: Uniform Circular Motion
WS -
Practice: Vertical Circular Motion
WS -
Ropes and Pulleys in Static Equilibrium
WS -
SHM Properties
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: Forces at Angles
TB -
Centripetal Acceleration
TB -
Centripetal Force
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
PhysicsLAB
Copyright © 1997-2019
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton