Lab
Cookie Sale Problem
Printer Friendly Version
A girl scout has to sell cookies in her neighborhood one Saturday morning. After walking out her door, she initially walks 15 meters, East, at 1 m/sec to arrive at her first customer's house. It takes her 180 seconds to ring the doorbell, have someone answer the door, explain her project, record their order and document their payment. She then walks 17 meters, North, at 1 m/sec to her second customer's house where, once more, she takes 180 seconds to complete the sale. Next she walks 25 meters, West, at 0.5 m/sec, to arrive at her third customer's house at which she completes her sale in 180 seconds. To reach her 4th customer's house, she walks 16 meters, South, at 0.5 m/sec and completes her sale in 180 seconds. Realizing that she is running out of time, she jogs 18 meters, East at 1.5 m/sec, to her 5th customer's house, completes her sale in 180 seconds, and runs 16 meters, South, at 2 m/sec to her 6th and final house where after taking 180 seconds she barely makes her deadline as she finishes with her morning activities.
In the following chart, supply the scout's travel times along with her x (E-W) and y (N-S) displacements for each step.
travel
travel
travel
sales
travel
steps
distance
speed
direction
times
times
x
y
(m)
(m/sec)
(sec)
(sec)
(m)
(m)
home
#1
15
1
E
180
#1
#2
17
1
N
180
#2
#3
25
0.5
W
180
#3
#4
16
0.5
S
180
#4
#5
18
1.5
E
180
#5
#6
16
2
S
180
Summary Questions
What
total distance
did she travel from her home to house #6 while making her sales?
How much
total time
was required for her to
travel
from her home to house #6 while making her sales?
How much
total time
was required for her give her "sales pitches" and collect her orders?
What was her
average speed
during these morning's activities?
What was her
net x
displacement?
What was her
net y
displacement?
Map Construction and Conclusions
On a sheet of graph paper, draw a
scaled vector diagram, or map
, of the girl scout's morning route. Be careful to provide your scale and label each house's location. On your map, neatly show your calculations for each of the following questions.
I. What is the
magnitude and direction of her net displacement
from her home to house #6? This answer may be calculated or constructed and measured with a ruler and protractor.
II. What is the
magnitude and direction of her average velocity
from her home to house #6?
III. Why is your answer for the magnitude of her average velocity of her morning's activities not the same as your previous anwer for her average speed?
IV. State the
exact direction
that she would need to walk directly home once she finishes her sales at house #6. Explain how you determined this answer.
Related Documents
Lab:
Labs -
2-Meter Stick Readings
Labs -
A Photoelectric Effect Analogy
Labs -
Acceleration Down an Inclined Plane
Labs -
Addition of Forces
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Circumference and Diameter
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conservation of Momentum
Labs -
Density of a Paper Clip
Labs -
Determining the Distance to the Moon
Labs -
Determining the Distance to the Sun
Labs -
Eratosthenes' Measure of the Earth's Circumference
Labs -
Flow Rates
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
Indirect Measurements: Height by Measuring The Length of a Shadow
Labs -
Indirect Measures: Inscribed Circles
Labs -
Inertial Mass
Labs -
InterState Map
Labs -
Introductory Simple Pendulums
Labs -
LAB: Ramps - Accelerated Motion
Labs -
Lab: Rectangle Measurements
Labs -
Lab: Triangle Measurements
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Marble Tube Launcher
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Projectiles Released at an Angle
Labs -
Quantized Mass
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rube Goldberg Challenge
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
The Size of the Moon
Labs -
The Size of the Sun
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video Lab: Two-Dimensional Projectile Motion
Resource Lesson:
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Analyzing SVA Graph Combinations
RL -
Average Velocity - A Calculus Approach
RL -
Basic Trigonometry
RL -
Basic Trigonometry Table
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Curve Fitting Patterns
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Dimensional Analysis
RL -
Directions: Flash Cards
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Linear Regression and Data Analysis Methods
RL -
Metric Prefixes, Scientific Notation, and Conversions
RL -
Metric System Definitions
RL -
Metric Units of Measurement
RL -
Monkey and the Hunter
RL -
Potential Energy Functions
RL -
Properties of Lines
RL -
Properties of Vectors
RL -
Significant Figures and Scientific Notation
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Vector Resultants: Average Velocity
RL -
Vectors and Scalars
Review:
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Hackensack
APP -
Puppy Love
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Cemetary
APP -
The Dognapping
APP -
The Golf Game
APP -
The Pool Game
APP -
The Spring Phling
APP -
War Games
CP -
2D Projectiles
CP -
Dropped From Rest
CP -
Freefall
CP -
Inverse Square Relationships
CP -
Non-Accelerated and Accelerated Motion
CP -
Sailboats: A Vector Application
CP -
Satellites: Circular and Elliptical
CP -
Tensions and Equilibrium
CP -
Tossed Ball
CP -
Up and Down
CP -
Vectors and Components
CP -
Vectors and Resultants
CP -
Vectors and the Parallelogram Rule
NT -
Average Speed
NT -
Back-and-Forth
NT -
Crosswinds
NT -
Headwinds
NT -
Monkey Shooter
NT -
Pendulum
NT -
Projectile
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Calculating Vector Resultants
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Circumference vs Diameter Lab Review
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Data Analysis #1
WS -
Data Analysis #2
WS -
Data Analysis #3
WS -
Data Analysis #4
WS -
Data Analysis #5
WS -
Data Analysis #6
WS -
Data Analysis #7
WS -
Data Analysis #8
WS -
Density of a Paper Clip Lab Review
WS -
Dimensional Analysis
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Force vs Displacement Graphs
WS -
Frames of Reference
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Graphical Relationships and Curve Fitting
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Indirect Measures
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
Mastery Review: Introductory Labs
WS -
Metric Conversions #1
WS -
Metric Conversions #2
WS -
Metric Conversions #3
WS -
Metric Conversions #4
WS -
Position-Time Graph "Story" Combinations
WS -
Projectiles Released at an Angle
WS -
Properties of Lines #1
WS -
Properties of Lines #2
WS -
Rotational Kinetic Energy
WS -
Scientific Notation
WS -
Significant Figures and Scientific Notation
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Work and Energy Practice: An Assortment of Situations
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Antiderivatives and Kinematics Functions
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
TB -
Working with Vectors
TB -
Working with Vectors
REV -
Math Pretest for Physics I
PhysicsLAB
Copyright © 1997-2022
Catharine H. Colwell
All rights reserved.
Application Programmer
Mark Acton