AP Free Response Question
2009 B1
Printer Friendly Version
In an experiment, students are to calculate the spring constant
k
of a vertical spring in a small jumping toy that initially rests on a table. When the spring in the toy is compressed a distance x from its uncompressed length
L
_{o}
and the toy is released, the top of the toy rises to a maximum height
h
above the point of maximum compression.
The students repeat the experiment several times, measuring
h
with objects of various masses taped to the top of the toy so that the combined mass of the toy and added objects is
m
. The bottom of the toy and the spring each have negligible mass compared to the top of the toy and the objects taped to it.
(a) Derive an expression for the height
h
in terms of
m
,
x
,
k
, and fundamental constants.
With the spring compressed a distance x = 0.020 meters in each trial, the students obtained the following data for different values of
m
.
(b)
i. What quantities should be graphed so that the slope of a best-fit straight line through the data points can be used to calculate the spring constant
k
?
ii. Fill in one or both of the blank columns in the table with calculated values of your quantities, including units.
(c) On the axes below, plot your data and draw a best-fit straight line. Label the axes and indicate the scale.
(d) Using your best-fit line, calculate the numerical value of the spring constant.
(e) Describe a procedure for measuring the height
h
in the experiment, given that the toy is only momentarily at that maximum height.
Topic Formulas
Description
Published Formula
centripetal acceleration
elastic potential energy
Hooke's Law
kinetic energy
period of a simple pendulum
period of a spring
potential energy
power
power
work
Related Documents
Lab:
Labs -
2-Meter Stick Readings
Labs -
A Battering Ram
Labs -
A Photoelectric Effect Analogy
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Acceleration Down an Inclined Plane
Labs -
Addition of Forces
Labs -
Air Track Collisions
Labs -
Ballistic Pendulum
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Bouncing Steel Spheres
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Circumference and Diameter
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Density of a Paper Clip
Labs -
Determining the Distance to the Moon
Labs -
Determining the Distance to the Sun
Labs -
Eratosthenes' Measure of the Earth's Circumference
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Home to School
Labs -
Indirect Measurements: Height by Measuring The Length of a Shadow
Labs -
Indirect Measures: Inscribed Circles
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
Lab: Rectangle Measurements
Labs -
Lab: Triangle Measurements
Labs -
Loop-the-Loop
Labs -
Marble Tube Launcher
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Oscillating Springs
Labs -
Quantized Mass
Labs -
Ramps: Sliding vs Rolling
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rotational Inertia
Labs -
Rube Goldberg Challenge
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Spring Carts
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
The Size of the Moon
Labs -
The Size of the Sun
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Blowdart Colliding with Cart
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video LAB: Looping Rollercoaster
Labs -
Video Lab: M&M Collides with Pop Can
Labs -
Video Lab: Marble Collides with Ballistic Pendulum
Labs -
Water Springs
Resource Lesson:
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
APC: Work Notation
RL -
Basic Trigonometry
RL -
Basic Trigonometry Table
RL -
Centripetal Acceleration and Angular Motion
RL -
Conservation of Energy and Springs
RL -
Curve Fitting Patterns
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation: Period of a Simple Pendulum
RL -
Dimensional Analysis
RL -
Energy Conservation in Simple Pendulums
RL -
Gravitational Energy Wells
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Linear Regression and Data Analysis Methods
RL -
Magnetic Forces on Particles (Part II)
RL -
Mechanical Energy
RL -
Metric Prefixes, Scientific Notation, and Conversions
RL -
Metric System Definitions
RL -
Metric Units of Measurement
RL -
Momentum and Energy
RL -
Period of a Pendulum
RL -
Potential Energy Functions
RL -
Principal of Least Action
RL -
Properties of Lines
RL -
Properties of Vectors
RL -
Rotational Dynamics: Pivoting Rods
RL -
Rotational Kinematics
RL -
Rotational Kinetic Energy
RL -
SHM Equations
RL -
Significant Figures and Scientific Notation
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Symmetries in Physics
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Thin Rods: Moment of Inertia
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Vector Resultants: Average Velocity
RL -
Vectors and Scalars
RL -
Vertical Circles and Non-Uniform Circular Motion
RL -
Work
RL -
Work and Energy
Review:
REV -
Honors Review: Waves and Introductory Skills
REV -
Physics I Review: Waves and Introductory Skills
REV -
Review: Circular Motion and Universal Gravitation
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Big Al
APP -
Puppy Love
APP -
Ring Around the Collar
APP -
The Dognapping
APP -
The Jogger
APP -
The Pepsi Challenge
APP -
The Pet Rock
APP -
The Pool Game
APP -
The Satellite
APP -
The Spring Phling
APP -
Timex
APP -
War Games
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Conservation of Energy
CP -
Inverse Square Relationships
CP -
Momentum and Energy
CP -
Momentum and Kinetic Energy
CP -
Power Production
CP -
Sailboats: A Vector Application
CP -
Satellites: Circular and Elliptical
CP -
Tensions and Equilibrium
CP -
Vectors and Components
CP -
Vectors and Resultants
CP -
Vectors and the Parallelogram Rule
CP -
Work and Energy
NT -
Circular Orbits
NT -
Cliffs
NT -
Elliptical Orbits
NT -
Escape Velocity
NT -
Gravitation #2
NT -
Pendulum
NT -
Ramps
NT -
Rotating Disk
NT -
Satellite Positions
NT -
Spiral Tube
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Basic Practice with Springs
WS -
Calculating Vector Resultants
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Circumference vs Diameter Lab Review
WS -
Data Analysis #1
WS -
Data Analysis #2
WS -
Data Analysis #3
WS -
Data Analysis #4
WS -
Data Analysis #5
WS -
Data Analysis #6
WS -
Data Analysis #7
WS -
Data Analysis #8
WS -
Density of a Paper Clip Lab Review
WS -
Dimensional Analysis
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Energy/Work Vocabulary
WS -
Force vs Displacement Graphs
WS -
Frames of Reference
WS -
Graphical Relationships and Curve Fitting
WS -
Indirect Measures
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Kinematics Along With Work/Energy
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
Mastery Review: Introductory Labs
WS -
Metric Conversions #1
WS -
Metric Conversions #2
WS -
Metric Conversions #3
WS -
Metric Conversions #4
WS -
More Practice with SHM Equations
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Potential Energy Functions
WS -
Practice: Momentum and Energy #1
WS -
Practice: Momentum and Energy #2
WS -
Practice: SHM Equations
WS -
Practice: Uniform Circular Motion
WS -
Practice: Vertical Circular Motion
WS -
Properties of Lines #1
WS -
Properties of Lines #2
WS -
Rotational Kinetic Energy
WS -
Scientific Notation
WS -
SHM Properties
WS -
Significant Figures and Scientific Notation
WS -
Static Springs: The Basics
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
Centripetal Acceleration
TB -
Centripetal Force
TB -
Work, Power, Kinetic Energy
TB -
Working with Vectors
TB -
Working with Vectors
REV -
Math Pretest for Physics I
CB-ETS
Copyright © 1970-2023
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114