AP Free Response Question
2008 Form B - B2
Printer Friendly Version
A 4700-kg truck carrying a 900-kg crate is traveling at 25 m/sec to the right along a straight, level highway, as shown above. The truck driver then applies the brakes, and as it slows down, the truck travels 55 meters in the next 3.0 sec. The crate does not slide on the back of the truck.
(a) Calculate the magnitude of the acceleration of the truck, assuming it is constant.
(b) On the diagram below, draw and label all the forces acting on the crate during braking.
(c) i. Calculate the minimum coefficient of friction between the crate and truck that prevents the crate from sliding.
(c) ii. Indicate whether this friction is static or kinetic.
Now assume the bed of the truck is frictionless, but there is a spring of spring constant 9200 N/m attaching the crate to the truck, as shown below.
The truck is initially at rest.
(d) If the truck and crate have the same acceleration, calculate the extension of the spring as the truck accelerates from rest to 25 m/s in 10 sec.
(e) At some later time, the truck is moving at a constant speed of 25 m/sec and the crate is in equilibrium. Indicate whether the extension of the spring is greater than, less than, or the same as in part (d) when the truck was accelerating. Explain your reasoning.
Topic Formulas
Description
Published Formula
centripetal acceleration
friction
gravitational potential energy
Hooke's Law
Newton's 2nd Law
Newton's Law of Universal Gravitation
period of a simple pendulum
period of a spring
potential elastic energy
uniform acceleration - displacement and instantaneous velocity
uniform acceleration - instantaneous position
uniform acceleration - instantaneous velocity
Related Documents
Lab:
Labs -
A Photoelectric Effect Analogy
Labs -
A Physical Pendulum, The Parallel Axis Theorem and A Bit of Calculus
Labs -
Acceleration Down an Inclined Plane
Labs -
Ballistic Pendulum: Muzzle Velocity
Labs -
Calculation of "g" Using Two Types of Pendulums
Labs -
Coefficient of Friction
Labs -
Coefficient of Friction
Labs -
Coefficient of Kinetic Friction (pulley, incline, block)
Labs -
Collision Pendulum: Muzzle Velocity
Labs -
Conical Pendulums
Labs -
Conical Pendulums
Labs -
Conservation of Energy and Vertical Circles
Labs -
Conservation of Momentum
Labs -
Conservation of Momentum in Two-Dimensions
Labs -
Cookie Sale Problem
Labs -
Falling Coffee Filters
Labs -
Flow Rates
Labs -
Force Table - Force Vectors in Equilibrium
Labs -
Freefall Mini-Lab: Reaction Times
Labs -
Freefall: Timing a Bouncing Ball
Labs -
Galileo Ramps
Labs -
Gravitational Field Strength
Labs -
Home to School
Labs -
Inelastic Collision - Velocity of a Softball
Labs -
Inertial Mass
Labs -
InterState Map
Labs -
Introductory Simple Pendulums
Labs -
Kepler's 1st and 2nd Laws
Labs -
LAB: Ramps - Accelerated Motion
Labs -
LabPro: Newton's 2nd Law
Labs -
LabPro: Uniformly Accelerated Motion
Labs -
Loop-the-Loop
Labs -
Mass of a Rolling Cart
Labs -
Moment of Inertia of a Bicycle Wheel
Labs -
Monkey and the Hunter Animation
Labs -
Monkey and the Hunter Screen Captures
Labs -
Oscillating Springs
Labs -
Projectiles Released at an Angle
Labs -
Ramps: Sliding vs Rolling
Labs -
Range of a Projectile
Labs -
Relationship Between Tension in a String and Wave Speed
Labs -
Relationship Between Tension in a String and Wave Speed Along the String
Labs -
Roller Coaster, Projectile Motion, and Energy
Labs -
Rube Goldberg Challenge
Labs -
Sand Springs
Labs -
Simple Pendulums: Class Data
Labs -
Simple Pendulums: LabPro Data
Labs -
Static Equilibrium Lab
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: Hooke's Law
Labs -
Static Springs: LabPro Data for Hooke's Law
Labs -
Target Lab: Ball Bearing Rolling Down an Inclined Plane
Labs -
Terminal Velocity
Labs -
Video LAB: A Gravitron
Labs -
Video Lab: Ball Bouncing Across a Stage
Labs -
Video LAB: Ball Re-Bounding From a Wall
Labs -
Video Lab: Cart Push #2 and #3
Labs -
Video LAB: Circular Motion
Labs -
Video Lab: Falling Coffee Filters
Labs -
Video LAB: Looping Rollercoaster
Labs -
Video Lab: Two-Dimensional Projectile Motion
Labs -
Water Springs
Resource Lesson:
RL -
A Derivation of the Formulas for Centripetal Acceleration
RL -
Accelerated Motion: A Data Analysis Approach
RL -
Accelerated Motion: Velocity-Time Graphs
RL -
Advanced Gravitational Forces
RL -
Air Resistance
RL -
Air Resistance: Terminal Velocity
RL -
Analyzing SVA Graph Combinations
RL -
Average Velocity - A Calculus Approach
RL -
Centripetal Acceleration and Angular Motion
RL -
Chase Problems
RL -
Chase Problems: Projectiles
RL -
Comparing Constant Velocity Graphs of Position-Time & Velocity-Time
RL -
Conservation of Energy and Springs
RL -
Constant Velocity: Position-Time Graphs
RL -
Constant Velocity: Velocity-Time Graphs
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Derivation of the Kinematics Equations for Uniformly Accelerated Motion
RL -
Derivation: Period of a Simple Pendulum
RL -
Derivatives: Instantaneous vs Average Velocities
RL -
Directions: Flash Cards
RL -
Energy Conservation in Simple Pendulums
RL -
Forces Acting at an Angle
RL -
Freebody Diagrams
RL -
Freefall: Horizontally Released Projectiles (2D-Motion)
RL -
Freefall: Projectiles in 1-Dimension
RL -
Freefall: Projectiles Released at an Angle (2D-Motion)
RL -
Gravitational Energy Wells
RL -
Inclined Planes
RL -
Inertial vs Gravitational Mass
RL -
Kepler's Laws
RL -
LC Circuit
RL -
Magnetic Forces on Particles (Part II)
RL -
Monkey and the Hunter
RL -
Newton's Laws of Motion
RL -
Non-constant Resistance Forces
RL -
Period of a Pendulum
RL -
Properties of Friction
RL -
Rotational Kinematics
RL -
SHM Equations
RL -
Simple Harmonic Motion
RL -
Springs and Blocks
RL -
Springs: Hooke's Law
RL -
Static Equilibrium
RL -
Summary: Graph Shapes for Constant Velocity
RL -
Summary: Graph Shapes for Uniformly Accelerated Motion
RL -
SVA: Slopes and Area Relationships
RL -
Symmetries in Physics
RL -
Systems of Bodies
RL -
Tension Cases: Four Special Situations
RL -
The Law of Universal Gravitation
RL -
Thin Rods: Moment of Inertia
RL -
Uniform Circular Motion: Centripetal Forces
RL -
Universal Gravitation and Satellites
RL -
Universal Gravitation and Weight
RL -
Vector Resultants: Average Velocity
RL -
Vertical Circles and Non-Uniform Circular Motion
RL -
What is Mass?
RL -
Work and Energy
Review:
REV -
Review: Circular Motion and Universal Gravitation
REV -
Test #1: APC Review Sheet
Worksheet:
APP -
Big Al
APP -
Big Fist
APP -
Family Reunion
APP -
Hackensack
APP -
Ring Around the Collar
APP -
The Antelope
APP -
The Baseball Game
APP -
The Big Mac
APP -
The Box Seat
APP -
The Cemetary
APP -
The Golf Game
APP -
The Jogger
APP -
The Satellite
APP -
The Spring Phling
APP -
Timex
CP -
2D Projectiles
CP -
Action-Reaction #1
CP -
Action-Reaction #2
CP -
Centripetal Acceleration
CP -
Centripetal Force
CP -
Dropped From Rest
CP -
Equilibrium on an Inclined Plane
CP -
Falling and Air Resistance
CP -
Force and Acceleration
CP -
Force and Weight
CP -
Force Vectors and the Parallelogram Rule
CP -
Freebody Diagrams
CP -
Freefall
CP -
Gravitational Interactions
CP -
Incline Places: Force Vector Resultants
CP -
Incline Planes - Force Vector Components
CP -
Inertia
CP -
Mobiles: Rotational Equilibrium
CP -
Net Force
CP -
Newton's Law of Motion: Friction
CP -
Non-Accelerated and Accelerated Motion
CP -
Satellites: Circular and Elliptical
CP -
Static Equilibrium
CP -
Tensions and Equilibrium
CP -
Tossed Ball
CP -
Up and Down
NT -
Acceleration
NT -
Air Resistance #1
NT -
An Apple on a Table
NT -
Apex #1
NT -
Apex #2
NT -
Average Speed
NT -
Back-and-Forth
NT -
Circular Orbits
NT -
Crosswinds
NT -
Falling Rock
NT -
Falling Spheres
NT -
Friction
NT -
Frictionless Pulley
NT -
Gravitation #1
NT -
Head-on Collisions #1
NT -
Head-on Collisions #2
NT -
Headwinds
NT -
Ice Boat
NT -
Monkey Shooter
NT -
Pendulum
NT -
Projectile
NT -
Rotating Disk
NT -
Sailboats #1
NT -
Sailboats #2
NT -
Scale Reading
NT -
Settling
NT -
Skidding Distances
NT -
Spiral Tube
NT -
Tensile Strength
NT -
Terminal Velocity
NT -
Tug of War #1
NT -
Tug of War #2
NT -
Two-block Systems
WS -
Accelerated Motion: Analyzing Velocity-Time Graphs
WS -
Accelerated Motion: Graph Shape Patterns
WS -
Accelerated Motion: Practice with Data Analysis
WS -
Advanced Properties of Freely Falling Bodies #1
WS -
Advanced Properties of Freely Falling Bodies #2
WS -
Advanced Properties of Freely Falling Bodies #3
WS -
Average Speed and Average Velocity
WS -
Average Speed Drill
WS -
Basic Practice with Springs
WS -
Calculating Force Components
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Chase Problems #1
WS -
Chase Problems #2
WS -
Chase Problems: Projectiles
WS -
Combining Kinematics and Dynamics
WS -
Constant Velocity: Converting Position and Velocity Graphs
WS -
Constant Velocity: Position-Time Graphs #1
WS -
Constant Velocity: Position-Time Graphs #2
WS -
Constant Velocity: Position-Time Graphs #3
WS -
Constant Velocity: Velocity-Time Graphs #1
WS -
Constant Velocity: Velocity-Time Graphs #2
WS -
Constant Velocity: Velocity-Time Graphs #3
WS -
Converting s-t and v-t Graphs
WS -
Distinguishing 2nd and 3rd Law Forces
WS -
Energy Methods: More Practice with Projectiles
WS -
Energy Methods: Projectiles
WS -
Force vs Displacement Graphs
WS -
Freebody Diagrams #1
WS -
Freebody Diagrams #2
WS -
Freebody Diagrams #3
WS -
Freebody Diagrams #4
WS -
Freefall #1
WS -
Freefall #2
WS -
Freefall #3
WS -
Freefall #3 (Honors)
WS -
Horizontally Released Projectiles #1
WS -
Horizontally Released Projectiles #2
WS -
Inertial Mass Lab Review Questions
WS -
Introduction to Springs
WS -
Kepler's Laws: Worksheet #1
WS -
Kepler's Laws: Worksheet #2
WS -
Kinematics Along With Work/Energy
WS -
Kinematics Equations #1
WS -
Kinematics Equations #2
WS -
Kinematics Equations #3: A Stop Light Story
WS -
Lab Discussion: Gravitational Field Strength and the Acceleration Due to Gravity
WS -
Lab Discussion: Inertial and Gravitational Mass
WS -
More Practice with SHM Equations
WS -
net F = ma
WS -
Pendulum Lab Review
WS -
Pendulum Lab Review
WS -
Position-Time Graph "Story" Combinations
WS -
Practice: SHM Equations
WS -
Practice: Uniform Circular Motion
WS -
Practice: Vertical Circular Motion
WS -
Projectiles Released at an Angle
WS -
Ropes and Pulleys in Static Equilibrium
WS -
Rotational Kinetic Energy
WS -
SHM Properties
WS -
Standard Model: Particles and Forces
WS -
Static Springs: The Basics
WS -
SVA Relationships #1
WS -
SVA Relationships #2
WS -
SVA Relationships #3
WS -
SVA Relationships #4
WS -
SVA Relationships #5
WS -
Universal Gravitation and Satellites
WS -
Vertical Circular Motion #1
WS -
Vocabulary for Newton's Laws
WS -
Work and Energy Practice: An Assortment of Situations
WS -
Work and Energy Practice: Forces at Angles
TB -
2A: Introduction to Motion
TB -
2B: Average Speed and Average Velocity
TB -
Antiderivatives and Kinematics Functions
TB -
Centripetal Acceleration
TB -
Centripetal Force
TB -
Honors: Average Speed/Velocity
TB -
Kinematics Derivatives
TB -
Projectile Summary
TB -
Projectile Summary
TB -
Projectiles Mixed (Vertical and Horizontal Release)
TB -
Projectiles Released at an Angle
TB -
Set 3A: Projectiles
TB -
Systems of Bodies (including pulleys)
TB -
Work, Power, Kinetic Energy
CB-ETS
Copyright © 1970-2022
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114