AP Free Response Question
2006 Form B - B3
Printer Friendly Version
Three electric charges are arranged on an x-y coordinate system, as shown above. Express all algebraic answers to the following parts in terms of
Q
,
q
,
x
,
d
, and fundamental constants.
(a) On the diagram, draw vectors representing the forces F
_{1}
and F
_{2}
exerted on the
+q
charge by the
+Q
and
—Q
charges, respectively.
(b) Determine the magnitude and direction of the total electric force on the
+q
charge.
(c) Determine the electric field (magnitude and direction) at the position of the
+q
charge due to the other two charges.
(d) Calculate the electric potential at the position of the
+q
charge due to the other two charges.
(e) Charge
+q
is now moved along the positive x-axis to a very large distance from the other two charges. The magnitude of the force on the
+q
charge at this large distance now varies as 1/x
^{3}
. Explain why this happens.
Topic Formulas
Description
Published Formula
capacitance
Coulomb's Law
electric field
electric potential energy
energy stored in a capacitor
parallel-plate capacitor
potential and electric field strength
potential due to a collection of point charges
Related Documents
Lab:
Labs -
Aluminum Foil Parallel Plate Capacitors
Labs -
Electric Field Mapping
Labs -
Electric Field Mapping 2
Labs -
Mass of an Electron
Labs -
RC Time Constants
Resource Lesson:
RL -
A Comparison of RC and RL Circuits
RL -
Capacitors and Dielectrics
RL -
Continuous Charge Distributions: Charged Rods and Rings
RL -
Continuous Charge Distributions: Electric Potential
RL -
Coulomb's Law: Beyond the Fundamentals
RL -
Coulomb's Law: Suspended Spheres
RL -
Derivation of Bohr's Model for the Hydrogen Spectrum
RL -
Dielectrics: Beyond the Fundamentals
RL -
Electric Field Strength vs Electric Potential
RL -
Electric Fields: Parallel Plates
RL -
Electric Fields: Point Charges
RL -
Electric Potential Energy: Point Charges
RL -
Electric Potential: Point Charges
RL -
Electrostatics Fundamentals
RL -
Famous Experiments: Millikan's Oil Drop
RL -
Gauss' Law
RL -
LC Circuit
RL -
Parallel Plate Capacitors
RL -
Shells and Conductors
RL -
Spherical, Parallel Plate, and Cylindrical Capacitors
Review:
REV -
Drill: Electrostatics
REV -
Electrostatics Point Charges Review
Worksheet:
APP -
The Birthday Cake
APP -
The Electrostatic Induction
CP -
Coulomb's Law
CP -
Electric Potential
CP -
Electrostatics: Induction and Conduction
NT -
Electric Potential vs Electric Potential Energy
NT -
Electrostatic Attraction
NT -
Lightning
NT -
Photoelectric Effect
NT -
Potential
NT -
Van de Graaff
NT -
Water Stream
WS -
Capacitors - Connected/Disconnected Batteries
WS -
Charged Projectiles in Uniform Electric Fields
WS -
Combinations of Capacitors
WS -
Coulomb Force Extra Practice
WS -
Coulomb's Law: Some Practice with Proportions
WS -
Electric Field Drill: Point Charges
WS -
Electric Fields: Parallel Plates
WS -
Electric Potential Drill: Point Charges
WS -
Electrostatic Forces and Fields: Point Charges
WS -
Electrostatic Vocabulary
WS -
Parallel Reading - The Atom
WS -
Standard Model: Particles and Forces
TB -
Advanced Capacitors
TB -
Basic Capacitors
TB -
Electric Field Strength vs Electric Potential
CB-ETS
Copyright © 1970-2022
All rights reserved.
Used with
permission
Mainland High School
Daytona Beach, FL 32114